Số chính phương là gì? Các nhận biết số chính phương


Một số là bình phương của số tự nhiên được gọi là số chính phương. Ví dụ: 16 là một số chính phương vì 16 = 4.4 = 4 mũ 2.

Cách nhận biết một số có là chính phương hay không do đó hãy xem nó có phải là bình phương của số tự nhiên nào không.

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ).

Tính chất của số chính phương

+ Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không bao giờ có chữ số tận cùng bằng 2, 3, 7, 8.

+ Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

+ Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n+1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n ∈ N).

+ Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n +1. Không có số chính phương nào có dạng 3n + 2 (n ∈ N).

+ Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.

Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

+ Số chính phương chia hết cho 2 thì chia hết cho 4.

Số chính phương chia hết cho 3 thì chia hết cho 9.

Số chính phương chia hết cho 5 thì chia hết cho 25.

Số chính phương chia hết cho 8 thì chia hết cho 16.

+ Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.

+ Công thức để tính hiệu của hai số chính phương: a2 - b2 = (a+b).(a-b).

+ Số ước nguyên dương của số chính phương là một số lẻ.

+ Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2.

+ Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1, ví dụ: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 + 9, ….

C. Một số dạng bài tập về số chính phương

I. Dạng 1: Chứng minh một số là số chính phương

Bài 1: Chứng minh rằng mọi số nguyên x, y thì:

A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.

Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4

Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì

A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2

Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z

Vậy A là số chính phương.

Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1

= (n2 + 3n)(n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*= t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2

= (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.

II. Dạng 2: Tìm giá trị của biến để biểu thức là số chính phương

Bài 1: Tìm số tự nhiên n sao cho các số sau là số chính phương

a) n2 + 2n + 12

b) n(n + 3)

c) 13n + 3

d) n2 + n + 1589

Giải:

a) Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k ∊ N)

(n2 + 2n + 1) + 11 = k2 ⇔ k2 – (n + 1)2 = 11 ⇔ (k + n + 1)(k – n - 1) = 11

Nhận xét thấy k + n + 1 > k - n - 1 và chúng là những số nguyên dương, nên ta có thể viết

(k + n + 1) (k - n - 1) = 11.1

Số chính phương là gì? Các nhận biết số chính phương 

b) Đặt n(n + 3) = a2 (n ∊ N) ⇒ n2 + 3n = a2 ⇔ 4n2 + 12n = 4a2

⇔ (4n2 + 12n + 9) – 9 = 4a2

⇔ (2n + 3)2 – 4a2 = 9

⇔ (2n + 3 + 2a).(2n + 3 – 2a) = 9

Nhận xét thấy 2n + 3 + 2a > 2n + 3 – 2a và chúng là những số nguyên dương, nên ta có thể viết (2n + 3 + 2a)(2n + 3 – 2a) = 9.1

Số chính phương là gì? Các nhận biết số chính phương 

c) Đặt 13n + 3 = y2 (y ∊ N) ⇒ 13(n - 1) = y2 – 16

⇔ 13(n - 1) = (y + 4)(y – 4)

⇒ (y + 4)(y – 4) chia hết cho 13 mà 13 là số nguyên tố nên y + 4 chia hết cho 13 hoặc y – 4 chia hết cho 13

⇒ y = 13k ± 4 (với k ∊ N)

⇒ 13(n - 1) = (13k ± 4)2 – 16 = 13k.(13k ± 8) = 13k2 ± 8k + 1

Vậy n = 13k2 ± 8k + 1 (với k ∊ N) thì 13n + 3 là số chính phương

d) Đặt n2 + n + 1589 = m2 (m ∊ N) ⇒ (4n2 + 1)2 + 6355 = 4m2

⇔ (2m + 2n + 1) (2m – 2n – 1) = 6355

Nhận xét thấy 2m + 2n + 1 > 2m – 2n – 1 > 0 và chúng là những số lẻ, nên ta có thể viết (2m + 2n + 1) (2m – 2n – 1) = 6355.1 = 1271.5 = 205.31 = 155.41

Suy ra n có thể có các giá trị sau : 1588 ; 316 ; 43 ; 28

III. Dạng 3: Tìm số chính phương

Bài 1: Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A một đơn vị thì ta được số chính phương B. Hãy tìm các số A và B.

Giải:

Số chính phương là gì? Các nhận biết số chính phương 

Nhận xét thấy tích (m – k)(m + k) > 0 nên m – k và m + k là 2 số nguyên dương.

Và m – k < m + k < 200 nên có thể viết (m – k) (m + k) = 11.101'

Do đó: 

Số chính phương là gì? Các nhận biết số chính phương 


 >> Lũy thừa là gì? Lũy thừa với số mũ tự nhiên là gì?

Thành viên mới đăng
Top